Mushroom Networks Blog

Set your network on autopilot.

Link Balancers - Legacy vs Modern

Link balancers are routers, gateways and firewalls that are engineered to be able to spread Internet traffic over 2 or more Internet lines. This is a fairly straightforward functionality on paper, so why is then link balancers can have difference performance differences from vendor to vendor? We will explore some of the inner workings for a load balancer with the goal of shedding light to IT professionals who are adding the reliability and performance enhancements to their networks.

As we mentioned, link balancers are defined as network appliances with 2 or more WAN ports so that they can spread network traffic between the WAN connections. However, one need to realize that the distribution of traffic on various WAN Internet connections is usually not that straightforward, simply because of the varying nature of the WAN connections. In other words, WAN connection performance will change depending on the time of day, the backbone network conditions, the cross traffic on the office network, the congestion in the backbone and various other factors (for example if a WAN has a time-varying transport, such as 4G LTE or 5G wireless, those transport changes will directly impact the WAN connection characteristics as well). These variation of WAN links will reflect itself as changes in network performance parameters such as throughput, latency and packet loss.

Legacy Link Balancers

As an IT manager, if you wanted to install a Link Balancer to your network several years ago, chances are you were presented with several link balancing options in the configuration such as round robin or weighted round robin. Round robin algorithms are meant to assign the traffic sessions going through the link balancer to a specific WAN link so that in aggregate, the sessions are distributed over the WAN links, specifically, in round robin, equally, in weighted round robin, with a fixed ratio. Of course in an ideal world where WAN links have unchanging performance and uptime, these approaches would work ok. However, in practice, real WAN links quickly will create problems when (and the term is “when” not “if”) networks fluctuate in their performance or get into a brown-out or even blackout situations. In that scenario, the round robin and weighted round robin algorithms will fail to load balance effectively, significantly impacting the end-user experience.

Another problem with legacy link balancers is the fact that traffic assignments are not done intelligently. As an example if you have an application with several sessions that require those sessions to present the same IP address, this will present a challenge in legacy link balancers as the sessions may be distributed among different WAN links and therefore different IP addresses.

Another similar example is for your STMP email traffic. Usually, the email servers (sometimes maintained by your ISP) would do source IP filtering and therefore will expect and accept emails only from the specific IP address that is configured. As you guessed, this will break if the email sessions are link balanced over different WAN links having different IP addresses.

Modern Link Balancing

Fast forward to a decade later (btw, the underperforming legacy link balancers still exist in the market), a new breed of link balancers are available. Usually grouped under the umbrella name of SD-WAN (Software Defined WAN) or WAN Virtualization, these link balancers try to address the shortcoming of legacy link balancers in various ways. If the SD-WAN is capable for http bonding, the device can adjust the parts of the download to be spread among available WAN links and dynamically adjust the sizes of the pieces of the download so that full utilization and dynamic rate adjustments can be done. This significantly outperform compared to legacy link balancers as with the SD-WAN router with broadband bonding you will be able to get the sum of the available link rates even for single file transfers.

SD-WAN on auto-pilot 

Similar to Elon’s Tesla electric vehicles, not all SD-WAN devices are created equal. Some SD-WAN solutions are equipped with advanced self-driving capabilities. The auto-piloting analogy applies to dynamic and adaptive adjustments that the SD-WAN link balancer can implement on the fly depending on the changes in the WAN conditions. As an example a VOIP optimized bonding tunnel (such as VOIP Armor, by Mushroom Networks) will measure the WAN link quality with respect to the parameters that matter for the application at hand (VOIP), namely the packet loss, latency and jitter that constitute the MOS score. What this means that variations in the WAN performance, including brownouts and blackouts on individual WAN connections can be disguised from the VOIP packets, as the SD-WAN link balancers routes around those network problems without requiring any human intervention.

The application centric overlay tunneling presented by modern SD-WAN routers combined with the ease of use of these devices are making the zero-touch networking, not just of installation but also for network operations, a reality. Network admins now can truly set their networks on autopilot and convert their emergency support tickets into schedule maintenance calls with their service providers.

Cahit Akin, CEO, Mushroom Networks, Inc. 

Mushroom Networks is the provider of Broadband Bonding appliances that put your networks on auto-pilot. Application flows are intelligently routed around network problems such as latency, jitter and packet loss. Network problems are solved even before you can notice.



Leave a Reply

Notify of

© 2004 – 2019 Mushroom Networks Inc. All rights reserved.

We respect your privacy. Within a few minutes you will receive an email from our team. You are one step closer to setting your network on autopilot...

Let's get started. Please call us at +1 (858) 452-1031, or fill the form: